Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Approximations and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach (1707.08860v7)

Published 27 Jul 2017 in cs.PF, cs.DC, cs.NI, and stat.AP

Abstract: Compared to basic fork-join queues, a job in (n, k) fork-join queues only needs its k out of all n sub-tasks to be finished. Since (n, k) fork-join queues are prevalent in popular distributed systems, erasure coding based cloud storages, and modern network protocols like multipath routing, estimating the sojourn time of such queues is thus critical for the performance measurement and resource plan of computer clusters. However, the estimating keeps to be a well-known open challenge for years, and only rough bounds for a limited range of load factors have been given. In this paper, we developed a closed-form linear transformation technique for jointly-identical random variables: An order statistic can be represented by a linear combination of maxima. This brand-new technique is then used to transform the sojourn time of non-purging (n, k) fork-join queues into a linear combination of the sojourn times of basic (k, k), (k+1, k+1), ..., (n, n) fork-join queues. Consequently, existing approximations for basic fork-join queues can be bridged to the approximations for non-purging (n, k) fork-join queues. The uncovered approximations are then used to improve the upper bounds for purging (n, k) fork-join queues. Simulation experiments show that this linear transformation approach is practiced well for moderate n and relatively large k.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.