Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Signal and Noise Statistics Oblivious Sparse Reconstruction using OMP/OLS (1707.08712v1)

Published 27 Jul 2017 in stat.ML

Abstract: Orthogonal matching pursuit (OMP) and orthogonal least squares (OLS) are widely used for sparse signal reconstruction in under-determined linear regression problems. The performance of these compressed sensing (CS) algorithms depends crucially on the \textit{a priori} knowledge of either the sparsity of the signal ($k_0$) or noise variance ($\sigma2$). Both $k_0$ and $\sigma2$ are unknown in general and extremely difficult to estimate in under determined models. This limits the application of OMP and OLS in many practical situations. In this article, we develop two computationally efficient frameworks namely TF-IGP and RRT-IGP for using OMP and OLS even when $k_0$ and $\sigma2$ are unavailable. Both TF-IGP and RRT-IGP are analytically shown to accomplish successful sparse recovery under the same set of restricted isometry conditions on the design matrix required for OMP/OLS with \textit{a priori} knowledge of $k_0$ and $\sigma2$. Numerical simulations also indicate a highly competitive performance of TF-IGP and RRT-IGP in comparison to OMP/OLS with \textit{a priori} knowledge of $k_0$ and $\sigma2$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.