Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Context-Independent Polyphonic Piano Onset Transcription with an Infinite Training Dataset (1707.08438v1)

Published 26 Jul 2017 in stat.ML and cs.SD

Abstract: Many of the recent approaches to polyphonic piano note onset transcription require training a machine learning model on a large piano database. However, such approaches are limited by dataset availability; additional training data is difficult to produce, and proposed systems often perform poorly on novel recording conditions. We propose a method to quickly synthesize arbitrary quantities of training data, avoiding the need for curating large datasets. Various aspects of piano note dynamics - including nonlinearity of note signatures with velocity, different articulations, temporal clustering of onsets, and nonlinear note partial interference - are modeled to match the characteristics of real pianos. Our method also avoids the disentanglement problem, a recently noted issue affecting machine-learning based approaches. We train a feed-forward neural network with two hidden layers on our generated training data and achieve both good transcription performance on the large MAPS piano dataset and excellent generalization qualities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)