Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Context-Independent Polyphonic Piano Onset Transcription with an Infinite Training Dataset (1707.08438v1)

Published 26 Jul 2017 in stat.ML and cs.SD

Abstract: Many of the recent approaches to polyphonic piano note onset transcription require training a machine learning model on a large piano database. However, such approaches are limited by dataset availability; additional training data is difficult to produce, and proposed systems often perform poorly on novel recording conditions. We propose a method to quickly synthesize arbitrary quantities of training data, avoiding the need for curating large datasets. Various aspects of piano note dynamics - including nonlinearity of note signatures with velocity, different articulations, temporal clustering of onsets, and nonlinear note partial interference - are modeled to match the characteristics of real pianos. Our method also avoids the disentanglement problem, a recently noted issue affecting machine-learning based approaches. We train a feed-forward neural network with two hidden layers on our generated training data and achieve both good transcription performance on the large MAPS piano dataset and excellent generalization qualities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.