Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A novel CS Beamformer root-MUSIC algorithm and its subspace deviation analysis (1707.08115v2)

Published 25 Jul 2017 in cs.IT and math.IT

Abstract: Subspace based techniques for direction of arrival (DOA) estimation need large amount of snapshots to detect source directions accurately. This poses a problem in the form of computational burden on practical applications. The introduction of compressive sensing (CS) to solve this issue has become a norm in the last decade. In this paper, a novel CS beamformer root-MUSIC algorithm is presented with a revised optimal measurement matrix bound. With regards to this algorithm, the effect of signal subspace deviation under low snapshot scenario (e.g. target tracking) is analysed. The CS beamformer greatly reduces computational complexity without affecting resolution of the algorithm, works on par with root-MUSIC under low snapshot scenario and also, gives an option of non-uniform linear array sensors unlike the case of root-MUSIC algorithm. The effectiveness of the algorithm is demonstrated with simulations under various scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube