Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel CS Beamformer root-MUSIC algorithm and its subspace deviation analysis (1707.08115v2)

Published 25 Jul 2017 in cs.IT and math.IT

Abstract: Subspace based techniques for direction of arrival (DOA) estimation need large amount of snapshots to detect source directions accurately. This poses a problem in the form of computational burden on practical applications. The introduction of compressive sensing (CS) to solve this issue has become a norm in the last decade. In this paper, a novel CS beamformer root-MUSIC algorithm is presented with a revised optimal measurement matrix bound. With regards to this algorithm, the effect of signal subspace deviation under low snapshot scenario (e.g. target tracking) is analysed. The CS beamformer greatly reduces computational complexity without affecting resolution of the algorithm, works on par with root-MUSIC under low snapshot scenario and also, gives an option of non-uniform linear array sensors unlike the case of root-MUSIC algorithm. The effectiveness of the algorithm is demonstrated with simulations under various scenarios.

Summary

We haven't generated a summary for this paper yet.