Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Restricted Eigenvalue from Stable Rank with Applications to Sparse Linear Regression (1707.08092v4)

Published 25 Jul 2017 in stat.ML, cs.DS, math.ST, and stat.TH

Abstract: High-dimensional settings, where the data dimension ($d$) far exceeds the number of observations ($n$), are common in many statistical and machine learning applications. Methods based on $\ell_1$-relaxation, such as Lasso, are very popular for sparse recovery in these settings. Restricted Eigenvalue (RE) condition is among the weakest, and hence the most general, condition in literature imposed on the Gram matrix that guarantees nice statistical properties for the Lasso estimator. It is natural to ask: what families of matrices satisfy the RE condition? Following a line of work in this area, we construct a new broad ensemble of dependent random design matrices that have an explicit RE bound. Our construction starts with a fixed (deterministic) matrix $X \in \mathbb{R}{n \times d}$ satisfying a simple stable rank condition, and we show that a matrix drawn from the distribution $X \Phi\top \Phi$, where $\Phi \in \mathbb{R}{m \times d}$ is a subgaussian random matrix, with high probability, satisfies the RE condition. This construction allows incorporating a fixed matrix that has an easily {\em verifiable} condition into the design process, and allows for generation of {\em compressed} design matrices that have a lower storage requirement than a standard design matrix. We give two applications of this construction to sparse linear regression problems, including one to a compressed sparse regression setting where the regression algorithm only has access to a compressed representation of a fixed design matrix $X$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.