Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Design and Evaluation of Vision-based Head and Face Tracking Interfaces for Assistive Input (1707.08019v2)

Published 25 Jul 2017 in cs.HC

Abstract: Interaction methods based on computer-vision hold the potential to become the next powerful technology to support breakthroughs in the field of human-computer interaction. Non-invasive vision-based techniques permit unconventional interaction methods to be considered, including use of movements of the face and head for intentional gestural control of computer systems. Facial gesture interfaces open new possibilities for assistive input technologies. This chapter gives an overview of research aimed at developing vision-based head and face-tracking interfaces. This work has important implications for future assistive input devices. To illustrate this concretely we describe work from our own research in which we developed two vision-based facial feature tracking algorithms for human computer interaction and assistive input. Evaluation forms a critical component of this research and we provide examples of new quantitative evaluation tasks as well as the use of model real-world applications for the qualitative evaluation of new interaction styles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.