Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prices of anarchy of selfish 2D bin packing games (1707.07882v1)

Published 25 Jul 2017 in cs.GT

Abstract: We consider a game-theoretical problem called selfish 2-dimensional bin packing game, a generalization of the 1-dimensional case already treated in the literature. In this game, the items to be packed are rectangles, and the bins are unit squares. The game starts with a set of items arbitrarily packed in bins. The cost of an item is defined as the ratio between its area and the total occupied area of the respective bin. Each item is a selfish player that wants to minimize its cost. A migration of an item to another bin is allowed only when its cost is decreased. We show that this game always converges to a Nash equilibrium (a stable packing where no single item can decrease its cost by migrating to another bin). We show that the pure price of anarchy of this game is unbounded, so we address the particular case where all items are squares. We show that the pure price of anarchy of the selfish square packing game is at least 2.3634 and at most 2.6875. We also present analogous results for the strong Nash equilibrium (a stable packing where no nonempty set of items can simultaneously migrate to another common bin and decrease the cost of each item in the set). We show that the strong price of anarchy when all items are squares is at least 2.0747 and at most 2.3605.

Citations (2)

Summary

We haven't generated a summary for this paper yet.