Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Graph-Theoretic Spatiotemporal Context Modeling for Video Saliency Detection (1707.07815v1)

Published 25 Jul 2017 in cs.CV

Abstract: As an important and challenging problem in computer vision, video saliency detection is typically cast as a spatiotemporal context modeling problem over consecutive frames. As a result, a key issue in video saliency detection is how to effectively capture the intrinsical properties of atomic video structures as well as their associated contextual interactions along the spatial and temporal dimensions. Motivated by this observation, we propose a graph-theoretic video saliency detection approach based on adaptive video structure discovery, which is carried out within a spatiotemporal atomic graph. Through graph-based manifold propagation, the proposed approach is capable of effectively modeling the semantically contextual interactions among atomic video structures for saliency detection while preserving spatial smoothness and temporal consistency. Experiments demonstrate the effectiveness of the proposed approach over several benchmark datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.