Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks (1707.07794v1)

Published 25 Jul 2017 in cs.AI and cs.DB

Abstract: Many real world systems need to operate on heterogeneous information networks that consist of numerous interacting components of different types. Examples include systems that perform data analysis on biological information networks; social networks; and information extraction systems processing unstructured data to convert raw text to knowledge graphs. Many previous works describe specialized approaches to perform specific types of analysis, mining and learning on such networks. In this work, we propose a unified framework consisting of a data model -a graph with a first order schema along with a declarative language for constructing, querying and manipulating such networks in ways that facilitate relational and structured machine learning. In particular, we provide an initial prototype for a relational and graph traversal query language where queries are directly used as relational features for structured machine learning models. Feature extraction is performed by making declarative graph traversal queries. Learning and inference models can directly operate on this relational representation and augment it with new data and knowledge that, in turn, is integrated seamlessly into the relational structure to support new predictions. We demonstrate this system's capabilities by showcasing tasks in natural language processing and computational biology domains.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.