Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Event Coreference Resolution by Iteratively Unfolding Inter-dependencies among Events (1707.07344v1)

Published 23 Jul 2017 in cs.CL

Abstract: We introduce a novel iterative approach for event coreference resolution that gradually builds event clusters by exploiting inter-dependencies among event mentions within the same chain as well as across event chains. Among event mentions in the same chain, we distinguish within- and cross-document event coreference links by using two distinct pairwise classifiers, trained separately to capture differences in feature distributions of within- and cross-document event clusters. Our event coreference approach alternates between WD and CD clustering and combines arguments from both event clusters after every merge, continuing till no more merge can be made. And then it performs further merging between event chains that are both closely related to a set of other chains of events. Experiments on the ECB+ corpus show that our model outperforms state-of-the-art methods in joint task of WD and CD event coreference resolution.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.