Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Packing Topological Minors Half-Integrally (1707.07221v5)

Published 22 Jul 2017 in math.CO and cs.DM

Abstract: The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering $H$-minors for any fixed graph $H$, the planarity of $H$ is equivalent to the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds for packing and covering $H$-topological minors, for any fixed graph $H$, which easily implies Thomas' conjecture. In fact, we prove an even stronger statement in which those topological minors are rooted at any choice of prescribed subsets of vertices. A number of results on $H$-topological minor free or $H$-minor free graphs have conclusions or requirements tied to properties of $H$. Classes of graphs that can half-integrally pack only a bounded number of $H$-topological minors or $H$-minors are more general topological minor-closed or minor-closed families whose minimal obstructions are more complicated than $H$. Our theorem provides a general machinery to extend those results to those more general classes of graphs without losing their tight connections to $H$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.