Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Predicting the Gender of Indonesian Names (1707.07129v2)

Published 22 Jul 2017 in cs.CL

Abstract: We investigated a way to predict the gender of a name using character-level Long-Short Term Memory (char-LSTM). We compared our method with some conventional machine learning methods, namely Naive Bayes, logistic regression, and XGBoost with n-grams as the features. We evaluated the models on a dataset consisting of the names of Indonesian people. It is not common to use a family name as the surname in Indonesian culture, except in some ethnicities. Therefore, we inferred the gender from both full names and first names. The results show that we can achieve 92.25% accuracy from full names, while using first names only yields 90.65% accuracy. These results are better than the ones from applying the classical machine learning algorithms to n-grams.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.