Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Motion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation (1707.07089v3)

Published 22 Jul 2017 in cs.CV

Abstract: This paper proposes a novel framework to reconstruct the dynamic magnetic resonance images (DMRI) with motion compensation (MC). Due to the inherent motion effects during DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been studied under a compressed sensing (CS) scheme. In this paper, by embedding the intensity-based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction with motion field estimation. The formulated optimization problem is solved by a primal-dual algorithm with linesearch due to its efficiency when dealing with non-differentiable problems. With the estimated motion field, the DMRI reconstruction is refined through MC. By employing the multi-scale coarse-to-fine strategy, we are able to update the variables(temporal image sequences and motion vectors) and to refine the image reconstruction alternately. Moreover, the proposed framework is capable of handling a wide class of prior information (regularizations) for DMRI reconstruction, such as sparsity, low rank and total variation. Experiments on various DMRI data, ranging from in vivo lung to cardiac dataset, validate the reconstruction quality improvement using the proposed scheme in comparison to several state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.