Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reconfiguration on nowhere dense graph classes (1707.06775v2)

Published 21 Jul 2017 in cs.DM

Abstract: Let $\mathcal{Q}$ be a vertex subset problem on graphs. In a reconfiguration variant of $\mathcal{Q}$ we are given a graph $G$ and two feasible solutions $S_s, S_t\subseteq V(G)$ of $\mathcal{Q}$ with $|S_s|=|S_t|=k$. The problem is to determine whether there exists a sequence $S_1,\ldots,S_n$ of feasible solutions, where $S_1=S_s$, $S_n=S_t$, $|S_i|\leq k\pm 1$, and each $S_{i+1}$ results from $S_i$, $1\leq i<n$, by the addition or removal of a single vertex. We prove that for every nowhere dense class of graphs and for every integer $r\geq 1$ there exists a polynomial $p_r$ such that the reconfiguration variants of the distance-$r$ independent set problem and the distance-$r$ dominating set problem admit kernels of size $p_r(k)$. If $k$ is equal to the size of a minimum distance-$r$ dominating set, then for any fixed $\epsilon\>0$ we even obtain a kernel of almost linear size $\mathcal{O}(k{1+\epsilon})$. We then prove that if a class $\mathcal{C}$ is somewhere dense and closed under taking subgraphs, then for some value of $r\geq 1$ the reconfiguration variants of the above problems on $\mathcal{C}$ are $\mathsf{W}[1]$-hard (and in particular we cannot expect the existence of kernelization algorithms). Hence our results show that the limit of tractability for the reconfiguration variants of the distance-$r$ independent set problem and distance-$r$ dominating set problem on subgraph closed graph classes lies exactly on the boundary between nowhere denseness and somewhere denseness.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)