Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Temporal Convolution Based Action Proposal: Submission to ActivityNet 2017 (1707.06750v3)

Published 21 Jul 2017 in cs.CV

Abstract: In this notebook paper, we describe our approach in the submission to the temporal action proposal (task 3) and temporal action localization (task 4) of ActivityNet Challenge hosted at CVPR 2017. Since the accuracy in action classification task is already very high (nearly 90% in ActivityNet dataset), we believe that the main bottleneck for temporal action localization is the quality of action proposals. Therefore, we mainly focus on the temporal action proposal task and propose a new proposal model based on temporal convolutional network. Our approach achieves the state-of-the-art performances on both temporal action proposal task and temporal action localization task.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.