Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Resource Allocation for MC-NOMA Systems with Cognitive Relaying (1707.06483v1)

Published 20 Jul 2017 in cs.IT and math.IT

Abstract: In this paper, we investigate the resource allocation algorithm design for cooperative cognitive relaying multicarrier non-orthogonal multiple access (MC-NOMA) systems. In particular, the secondary base station serves multiple secondary users and simultaneously acts as a relay assisting the information transmission in the primary network. The resource allocation aims to maximize the weighted system throughput by jointly optimizing the power and subcarrier allocation for both the primary and the secondary networks while satisfying the quality-of-service requirements of the primary users. The algorithm design is formulated as a mixed combinatorial non-convex optimization problem. We apply monotonic optimization theory to solve the problem leading to an optimal resource allocation policy. Besides, we develop a low-complexity scheme to find a suboptimal solution. Our simulation results reveal that the performance of the proposed suboptimal algorithm closely approaches that of the optimal one. Besides, the combination of MC-NOMA and cognitive relaying improves the system throughput considerably compared to conventional multicarrier cognitive relaying systems.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.