Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Metrical-accent Aware Vocal Onset Detection in Polyphonic Audio (1707.06163v1)

Published 19 Jul 2017 in cs.SD, cs.CL, and cs.MM

Abstract: The goal of this study is the automatic detection of onsets of the singing voice in polyphonic audio recordings. Starting with a hypothesis that the knowledge of the current position in a metrical cycle (i.e. metrical accent) can improve the accuracy of vocal note onset detection, we propose a novel probabilistic model to jointly track beats and vocal note onsets. The proposed model extends a state of the art model for beat and meter tracking, in which a-priori probability of a note at a specific metrical accent interacts with the probability of observing a vocal note onset. We carry out an evaluation on a varied collection of multi-instrument datasets from two music traditions (English popular music and Turkish makam) with different types of metrical cycles and singing styles. Results confirm that the proposed model reasonably improves vocal note onset detection accuracy compared to a baseline model that does not take metrical position into account.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.