Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative convolutional Fisher vector network for action recognition (1707.06119v1)

Published 19 Jul 2017 in cs.CV

Abstract: In this work we propose a novel neural network architecture for the problem of human action recognition in videos. The proposed architecture expresses the processing steps of classical Fisher vector approaches, that is dimensionality reduction by principal component analysis (PCA) projection, Gaussian mixture model (GMM) and Fisher vector descriptor extraction, as network layers. By contrast to other methods where these steps are performed consecutively and the corresponding parameters are learned in an unsupervised manner, having them defined as a single neural network allows us to refine the whole model discriminatively in an end to end fashion. Furthermore, we show that the proposed architecture can be used as a replacement for the fully connected layers in popular convolutional networks achieving a comparable classification performance, or even significantly surpassing the performance of similar architectures while reducing the total number of trainable parameters by a factor of 5. We show that our method achieves significant improvements in comparison to the classical chain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Petar Palasek (3 papers)
  2. Ioannis Patras (73 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.