Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Boolean dimension and tree-width (1707.06114v5)

Published 19 Jul 2017 in math.CO and cs.DS

Abstract: The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if $P$ has dimension $d$, then to know whether $x \leq y$ in $P$ it is enough to check whether $x\leq y$ in each of the $d$ linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset $P$ has boolean dimension at most $d$ if it is possible to decide whether $x \leq y$ in $P$ by looking at the relative position of $x$ and $y$ in only $d$ permutations of the elements of $P$. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.