Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Bipartite Matching with Amortized $O(\log^2 n)$ Replacements (1707.06063v4)

Published 19 Jul 2017 in cs.DS

Abstract: In the online bipartite matching problem with replacements, all the vertices on one side of the bipartition are given, and the vertices on the other side arrive one by one with all their incident edges. The goal is to maintain a maximum matching while minimizing the number of changes (replacements) to the matching. We show that the greedy algorithm that always takes the shortest augmenting path from the newly inserted vertex (denoted the SAP protocol) uses at most amortized $O(\log2 n)$ replacements per insertion, where $n$ is the total number of vertices inserted. This is the first analysis to achieve a polylogarithmic number of replacements for \emph{any} replacement strategy, almost matching the $\Omega(\log n)$ lower bound. The previous best strategy known achieved amortized $O(\sqrt{n})$ replacements [Bosek, Leniowski, Sankowski, Zych, FOCS 2014]. For the SAP protocol in particular, nothing better than then trivial $O(n)$ bound was known except in special cases. Our analysis immediately implies the same upper bound of $O(\log2 n)$ reassignments for the capacitated assignment problem, where each vertex on the static side of the bipartition is initialized with the capacity to serve a number of vertices. We also analyze the problem of minimizing the maximum server load. We show that if the final graph has maximum server load $L$, then the SAP protocol makes amortized $O( \min{L \log2 n , \sqrt{n}\log n})$ reassignments. We also show that this is close to tight because $\Omega(\min{L, \sqrt{n}})$ reassignments can be necessary.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.