Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameterized complexity of games with monotonically ordered ω-regular objectives (1707.05968v4)

Published 19 Jul 2017 in cs.GT and cs.LO

Abstract: In recent years, two-player zero-sum games with multiple objectives have received a lot of interest as a model for the synthesis of complex reactive systems. In this framework, Player 1 wins if he can ensure that all objectives are satisfied against any behavior of Player 2. When this is not possible to satisfy all the objectives at once, an alternative is to use some preorder on the objectives according to which subset of objectives Player 1 wants to satisfy. For example, it is often natural to provide more significance to one objective over another, a situation that can be modelled with lexicographically ordered objectives for instance. Inspired by recent work on concurrent games with multiple {\omega}-regular objectives by Bouyer et al., we investigate in detail turned-based games with monotonically ordered and {\omega}-regular objectives. We study the threshold problem which asks whether player 1 can ensure a payoff greater than or equal to a given threshold w.r.t. a given monotonic preorder. As the number of objectives is usually much smaller than the size of the game graph, we provide a parametric complexity analysis and we show that our threshold problem is in FPT for all monotonic preorders and all classical types of {\omega}-regular objectives. We also provide polynomial time algorithms for B\"uchi, coB\"uchi and explicit Muller objectives for a large subclass of monotonic preorders that includes among others the lexicographic preorder. In the particular case of lexicographic preorder, we also study the complexity of computing the values and the memory requirements of optimal strategies.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube