Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PAC-Bayes and Domain Adaptation (1707.05712v3)

Published 17 Jul 2017 in stat.ML

Abstract: We provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different, but related, target distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al. (2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of common domain adaptation works, we derive a second bound (introduced in Germain et al., 2016) that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the distributions' divergence-expressed as a ratio-controls the trade-off between a source error measure and the target voters' disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two learning algorithms, and we evaluate them on real data.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.