Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning (1707.04991v1)

Published 17 Jul 2017 in cs.CV

Abstract: We formulate tracking as an online decision-making process, where a tracking agent must follow an object despite ambiguous image frames and a limited computational budget. Crucially, the agent must decide where to look in the upcoming frames, when to reinitialize because it believes the target has been lost, and when to update its appearance model for the tracked object. Such decisions are typically made heuristically. Instead, we propose to learn an optimal decision-making policy by formulating tracking as a partially observable decision-making process (POMDP). We learn policies with deep reinforcement learning algorithms that need supervision (a reward signal) only when the track has gone awry. We demonstrate that sparse rewards allow us to quickly train on massive datasets, several orders of magnitude more than past work. Interestingly, by treating the data source of Internet videos as unlimited streams, we both learn and evaluate our trackers in a single, unified computational stream.

Citations (108)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.