Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Testing bounded arboricity (1707.04864v2)

Published 16 Jul 2017 in cs.DS

Abstract: In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are $\epsilon$-close to having arboricity $\alpha$ and graphs that $c \cdot \epsilon$-far from having arboricity $3\alpha$, where $c$ is an absolute small constant. The query complexity and running time of the algorithm are $\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right){O(\log(1/\epsilon))}\right)$ where $n$ denotes the number of vertices and $m$ denotes the number of edges. In terms of the dependence on $n$ and $m$ this bound is optimal up to poly-logarithmic factors since $\Omega(n/\sqrt{m})$ queries are necessary (and $\alpha = O(\sqrt{m}))$. We leave it as an open question whether the dependence on $1/\epsilon$ can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube