Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of Overlapping Communities via Constrained Egonet Tensor Decomposition (1707.04607v1)

Published 14 Jul 2017 in cs.SI

Abstract: Detection of overlapping communities in real-world networks is a generally challenging task. Upon recognizing that a network is in fact the union of its egonets, a novel network representation using multi-way data structures is advocated in this contribution. The introduced sparse tensor-based representation exhibits richer structure compared to its matrix counterpart, and thus enables a more robust approach to community detection. To leverage this structure, a constrained tensor approximation framework is introduced using PARAFAC decomposition. The arising constrained trilinear optimization is handled via alternating minimization, where intermediate subproblems are solved using the alternating direction method of multipliers (ADMM) to ensure convergence. The factors obtained provide soft community memberships, which can further be exploited for crisp, and possibly-overlapping community assignments. The framework is further broadened to include time-varying graphs, where the edgeset as well as the underlying communities evolve through time. Performance of the proposed approach is assessed via tests on benchmark synthetic graphs as well as real-world networks. As corroborated by numerical tests, the proposed tensor-based representation captures multi-hop nodal connections, that is, connectivity patterns within single-hop neighbors, whose exploitation yields a more robust community identification in the presence of mixing as well as overlapping communities.

Citations (17)

Summary

We haven't generated a summary for this paper yet.