Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fast Restricted Causal Inference (1707.04584v1)

Published 13 Jul 2017 in cs.AI

Abstract: Hidden variables are well known sources of disturbance when recovering belief networks from data based only on measurable variables. Hence models assuming existence of hidden variables are under development. This paper presents a new algorithm "accelerating" the known CI algorithm of Spirtes, Glymour and Scheines {Spirtes:93}. We prove that this algorithm does not produces (conditional) independencies not present in the data if statistical independence test is reliable. This result is to be considered as non-trivial since e.g. the same claim fails to be true for FCI algorithm, another "accelerator" of CI, developed in {Spirtes:93}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.