Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Temporal Network Comparison using Graphlet-orbit Transitions (1707.04572v1)

Published 14 Jul 2017 in cs.SI and physics.soc-ph

Abstract: Networks are widely used to model real-world systems and uncover their topological features. Network properties such as the degree distribution and shortest path length have been computed in numerous real-world networks, and most of them have been shown to be both scale-free and small-world networks. Graphlets and network motifs are subgraph patterns that capture richer structural information than aforementioned global network properties, and these local features are often used for network comparison. However, past work on graphlets and network motifs is almost exclusively applicable only for static networks. Many systems are better represented as temporal networks which depict not only how a system was at a given stage but also how they evolved. Time-dependent information is crucial in temporal networks and, by disregarding that data, static methods can not achieve the best possible results. This paper introduces an extension of graphlets for temporal networks. Our proposed method enumerates all 4-node graphlet-orbits in each network-snapshot, building the corresponding orbit-transition matrix in the process. Our hypothesis is that networks representing similar systems have characteristic orbit transitions which better identify them than simple static patterns, and this is assessed on a set of real temporal networks split into categories. In order to perform temporal network comparison we put forward an orbit-transition-agreement metric (OTA). OTA correctly groups a set of temporal networks that both static network motifs and graphlets fail to do so adequately. Furthermore, our method produces interpretable results which we use to uncover characteristic orbit transitions, and that can be regarded as a network-fingerprint.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.