Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

How hard is it to satisfy (almost) all roommates? (1707.04316v3)

Published 13 Jul 2017 in cs.CC and cs.DS

Abstract: The classic Stable Roommates problem (which is the non-bipartite generalization of the well-known Stable Marriage problem) asks whether there is a stable matching for a given set of agents, i.e. a partitioning of the agents into disjoint pairs such that no two agents induce a blocking pair. Herein, each agent has a preference list denoting who it prefers to have as a partner, and two agents are blocking if they prefer to be with each other rather than with their assigned partners. Since stable matchings may not be unique, we study an NP-hard optimization variant of Stable Roommates, called Egal Stable Roommates, which seeks to find a stable matching with a minimum egalitarian cost {\gamma}, i.e. the sum of the dissatisfaction of the agents is minimum. The dissatisfaction of an agent is the number of agents that this agent prefers over its partner if it is matched; otherwise it is the length of its preference list. We also study almost stable matchings, called Min-Block-Pair Stable Roommates, which seeks to find a matching with a minimum number {\beta} of blocking pairs. Our main result is that Egal Stable Roommates parameterized by {\gamma} is fixed-parameter tractable, while Min-Block-Pair Stable Roommates parameterized by {\beta} is W[1]-hard, even if the length of each preference list is at most five.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube