Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Query-Aware Sparse Coding for Multi-Video Summarization (1707.04021v1)

Published 13 Jul 2017 in cs.CV

Abstract: Given the explosive growth of online videos, it is becoming increasingly important to relieve the tedious work of browsing and managing the video content of interest. Video summarization aims at providing such a technique by transforming one or multiple videos into a compact one. However, conventional multi-video summarization methods often fail to produce satisfying results as they ignore the user's search intent. To this end, this paper proposes a novel query-aware approach by formulating the multi-video summarization in a sparse coding framework, where the web images searched by the query are taken as the important preference information to reveal the query intent. To provide a user-friendly summarization, this paper also develops an event-keyframe presentation structure to present keyframes in groups of specific events related to the query by using an unsupervised multi-graph fusion method. We release a new public dataset named MVS1K, which contains about 1, 000 videos from 10 queries and their video tags, manual annotations, and associated web images. Extensive experiments on MVS1K dataset validate our approaches produce superior objective and subjective results against several recently proposed approaches.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.