Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Using RDF Summary Graph For Keyword-based Semantic Searches (1707.03602v1)

Published 12 Jul 2017 in cs.AI, cs.DB, and cs.IR

Abstract: The Semantic Web began to emerge as its standards and technologies developed rapidly in the recent years. The continuing development of Semantic Web technologies has facilitated publishing explicit semantics with data on the Web in RDF data model. This study proposes a semantic search framework to support efficient keyword-based semantic search on RDF data utilizing near neighbor explorations. The framework augments the search results with the resources in close proximity by utilizing the entity type semantics. Along with the search results, the system generates a relevance confidence score measuring the inferred semantic relatedness of returned entities based on the degree of similarity. Furthermore, the evaluations assessing the effectiveness of the framework and the accuracy of the results are presented.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.