Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Scientific Table Search Using Keyword Queries (1707.03423v1)

Published 11 Jul 2017 in cs.IR

Abstract: Tables are common and important in scientific documents, yet most text-based document search systems do not capture structures and semantics specific to tables. How to bridge different types of mismatch between keywords queries and scientific tables and what influences ranking quality needs to be carefully investigated. This paper considers the structure of tables and gives different emphasis to table components. On the query side, thanks to external knowledge such as knowledge bases and ontologies, key concepts are extracted and used to build structured queries, and target quantity types are identified and used to expand original queries. A probabilistic framework is proposed to incorporate structural and semantic information from both query and table sides. We also construct and release TableArXiv, a high quality dataset with 105 queries and corresponding relevance judgements for scientific table search. Experiments demonstrate significantly higher accuracy overall and at the top of the rankings than several baseline methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.