Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Document Retrieval for Large Scale Content Analysis using Contextualized Dictionaries (1707.03217v1)

Published 11 Jul 2017 in cs.IR

Abstract: This paper presents a procedure to retrieve subsets of relevant documents from large text collections for Content Analysis, e.g. in social sciences. Document retrieval for this purpose needs to take account of the fact that analysts often cannot describe their research objective with a small set of key terms, especially when dealing with theoretical or rather abstract research interests. Instead, it is much easier to define a set of paradigmatic documents which reflect topics of interest as well as targeted manner of speech. Thus, in contrast to classic information retrieval tasks we employ manually compiled collections of reference documents to compose large queries of several hundred key terms, called dictionaries. We extract dictionaries via Topic Models and also use co-occurrence data from reference collections. Evaluations show that the procedure improves retrieval results for this purpose compared to alternative methods of key term extraction as well as neglecting co-occurrence data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.