Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-rank updates of matrix functions (1707.03045v1)

Published 10 Jul 2017 in math.NA and cs.SI

Abstract: We consider the task of updating a matrix function $f(A)$ when the matrix $A\in{\mathbb C}{n \times n}$ is subject to a low-rank modification. In other words, we aim at approximating $f(A+D)-f(A)$ for a matrix $D$ of rank $k \ll n$. The approach proposed in this paper attains efficiency by projecting onto tensorized Krylov subspaces produced by matrix-vector multiplications with $A$ and $A*$. We prove the approximations obtained from $m$ steps of the proposed methods are exact if $f$ is a polynomial of degree at most $m$ and use this as a basis for proving a variety of convergence results, in particular for the matrix exponential and for Markov functions. We illustrate the performance of our method by considering various examples from network analysis, where our approach can be used to cheaply update centrality and communicability measures.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.