Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process (1707.03010v1)
Abstract: Given the observation of a high-dimensional Ornstein-Uhlenbeck (OU) process in continuous time, we proceed to the inference of the drift parameter under a row-sparsity assumption. Towards that aim, we consider the negative log-likelihood of the process, penalized by an $\ell1$-penalization (Lasso and Adaptive Lasso). We provide both non-asymptotic and asymptotic results for this procedure, by means of a sharp oracle inequality, and a limit theorem in the long-time asymptotics, including asymptotic consistency for variable selection. As a by-product, we point out the fact that for the Ornstein-Uhlenbeck process, one does not need an assumption of restricted eigenvalue type in order to derive fast rates for the Lasso, while it is well-known to be mandatory for linear regression for instance. Numerical results illustrate the benefits of this penalized procedure compared to standard maximum likelihood approaches both on simulations and real-world financial data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.