Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthesis-based Robust Low Resolution Face Recognition (1707.02733v1)

Published 10 Jul 2017 in cs.CV

Abstract: Recognition of low resolution face images is a challenging problem in many practical face recognition systems. Methods have been proposed in the face recognition literature for the problem which assume that the probe is low resolution, but a high resolution gallery is available for recognition. These attempts have been aimed at modifying the probe image such that the resultant image provides better discrimination. We formulate the problem differently by leveraging the information available in the high resolution gallery image and propose a dictionary learning approach for classifying the low-resolution probe image. An important feature of our algorithm is that it can handle resolution change along with illumination variations. Furthermore, we also kernelize the algorithm to handle non-linearity in data and present a joint dictionary learning technique for robust recognition at low resolutions. The effectiveness of the proposed method is demonstrated using standard datasets and a challenging outdoor face dataset. It is shown that our method is efficient and can perform significantly better than many competitive low resolution face recognition algorithms.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.