Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Topology Reduction in Deep Convolutional Feature Extraction Networks (1707.02711v2)

Published 10 Jul 2017 in stat.ML, cs.CV, cs.IT, cs.LG, math.FA, and math.IT

Abstract: Deep convolutional neural networks (CNNs) used in practice employ potentially hundreds of layers and $10$,$000$s of nodes. Such network sizes entail significant computational complexity due to the large number of convolutions that need to be carried out; in addition, a large number of parameters needs to be learned and stored. Very deep and wide CNNs may therefore not be well suited to applications operating under severe resource constraints as is the case, e.g., in low-power embedded and mobile platforms. This paper aims at understanding the impact of CNN topology, specifically depth and width, on the network's feature extraction capabilities. We address this question for the class of scattering networks that employ either Weyl-Heisenberg filters or wavelets, the modulus non-linearity, and no pooling. The exponential feature map energy decay results in Wiatowski et al., 2017, are generalized to $\mathcal{O}(a{-N})$, where an arbitrary decay factor $a>1$ can be realized through suitable choice of the Weyl-Heisenberg prototype function or the mother wavelet. We then show how networks of fixed (possibly small) depth $N$ can be designed to guarantee that $((1-\varepsilon)\cdot 100)\%$ of the input signal's energy are contained in the feature vector. Based on the notion of operationally significant nodes, we characterize, partly rigorously and partly heuristically, the topology-reducing effects of (effectively) band-limited input signals, band-limited filters, and feature map symmetries. Finally, for networks based on Weyl-Heisenberg filters, we determine the prototype function bandwidth that minimizes---for fixed network depth $N$---the average number of operationally significant nodes per layer.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube