Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Random Walks on Small World Networks (1707.02467v3)

Published 8 Jul 2017 in cs.DM

Abstract: We study the mixing time of random walks on small-world networks modelled as follows: starting with the 2-dimensional periodic grid, each pair of vertices ${u,v}$ with distance $d>1$ is added as a "long-range" edge with probability proportional to $d{-r}$, where $r\geq 0$ is a parameter of the model. Kleinberg studied a close variant of this network model and proved that the (decentralised) routing time is $O((\log n)2)$ when $r=2$ and $n{\Omega(1)}$ when $r\neq 2$. Here, we prove that the random walk also undergoes a phase transition at $r=2$, but in this case the phase transition is of a different form. We establish that the mixing time is $\Theta(\log n)$ for $r<2$, $O((\log n)4)$ for $r=2$ and $n{\Omega(1)}$ for $r>2$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.