Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An HTM based cortical algorithm for detection of seismic waves (1707.01642v1)

Published 6 Jul 2017 in cs.NE

Abstract: Recognizing seismic waves immediately is very important for the realization of efficient disaster prevention. Generally these systems consist of a network of seismic detectors that send real time data to a central server. The server elaborates the data and attempts to recognize the first signs of an earthquake. The current problem with this approach is that it is subject to false alarms. A critical trade-off exists between sensitivity of the system and error rate. To overcame this problems, an artificial neural network based intelligent learning systems can be used. However, conventional supervised ANN systems are difficult to train, CPU intensive and prone to false alarms. To surpass these problems, here we attempt to use a next-generation unsupervised cortical algorithm HTM. This novel approach does not learn particular waveforms, but adapts to continuously fed data reaching the ability to discriminate between normality (seismic sensor background noise in no-earthquake conditions) and anomaly (sensor response to a jitter or an earthquake). Main goal of this study is test the ability of the HTM algorithm to be used to signal earthquakes automatically in a feasible disaster prevention system. We describe the methodology used and give the first qualitative assessments of the recognition ability of the system. Our preliminary results show that the cortical algorithm used is very robust to noise and that can successfully recognize synthetic earthquake-like signals efficiently and reliably.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.