Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An HTM based cortical algorithm for detection of seismic waves (1707.01642v1)

Published 6 Jul 2017 in cs.NE

Abstract: Recognizing seismic waves immediately is very important for the realization of efficient disaster prevention. Generally these systems consist of a network of seismic detectors that send real time data to a central server. The server elaborates the data and attempts to recognize the first signs of an earthquake. The current problem with this approach is that it is subject to false alarms. A critical trade-off exists between sensitivity of the system and error rate. To overcame this problems, an artificial neural network based intelligent learning systems can be used. However, conventional supervised ANN systems are difficult to train, CPU intensive and prone to false alarms. To surpass these problems, here we attempt to use a next-generation unsupervised cortical algorithm HTM. This novel approach does not learn particular waveforms, but adapts to continuously fed data reaching the ability to discriminate between normality (seismic sensor background noise in no-earthquake conditions) and anomaly (sensor response to a jitter or an earthquake). Main goal of this study is test the ability of the HTM algorithm to be used to signal earthquakes automatically in a feasible disaster prevention system. We describe the methodology used and give the first qualitative assessments of the recognition ability of the system. Our preliminary results show that the cortical algorithm used is very robust to noise and that can successfully recognize synthetic earthquake-like signals efficiently and reliably.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ruggero Micheletto (4 papers)
  2. Ahyi Kim (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.