Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification (1707.01265v2)

Published 5 Jul 2017 in cs.CL

Abstract: Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only important parts of a sentence using multiple range-restricted bidirectional layers and attention for relation classification. Experimental results on the SemEval-2010 relation classification task show that our model is comparable to the state-of-the-art CNN-based and RNN-based models that use additional linguistic information.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.