Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Speaker Identification in a Shouted Talking Environment Based on Novel Third-Order Circular Suprasegmental Hidden Markov Models (1707.00686v1)

Published 2 Jul 2017 in cs.SD

Abstract: It is well known that speaker identification yields very high performance in a neutral talking environment, on the other hand, the performance has been sharply declined in a shouted talking environment. This work aims at proposing, implementing, and evaluating novel Third-Order Circular Suprasegmental Hidden Markov Models (CSPHMM3s) to improve the low performance of text-independent speaker identification in a shouted talking environment. CSPHMM3s possess combined characteristics of: Circular Hidden Markov Models (CHMMs), Third-Order Hidden Markov Models (HMM3s), and Suprasegmental Hidden Markov Models (SPHMMs). Our results show that CSPHMM3s are superior to each of: First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM1s), Second-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM2s), Third-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM3s), First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s), and Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) in a shouted talking environment. Using our collected speech database, average speaker identification performance in a shouted talking environment based on LTRSPHMM1s, LTRSPHMM2s, LTRSPHMM3s, CSPHMM1s, CSPHMM2s, and CSPHMM3s is 74.6%, 78.4%, 81.7%, 78.7%, 83.4%, and 85.8%, respectively. Speaker identification performance that has been achieved based on CSPHMM3s is close to that attained based on subjective assessment by human listeners.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)