Papers
Topics
Authors
Recent
2000 character limit reached

Talking Condition Identification Using Second-Order Hidden Markov Models (1707.00679v1)

Published 1 Jul 2017 in cs.SD

Abstract: This work focuses on enhancing the performance of text-dependent and speaker-dependent talking condition identification systems using second-order hidden Markov models (HMM2s). Our results show that the talking condition identification performance based on HMM2s has been improved significantly compared to first-order hidden Markov models (HMM1s). Our talking conditions in this work are neutral, shouted, loud, angry, happy, and fear.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.