2000 character limit reached
Talking Condition Identification Using Second-Order Hidden Markov Models (1707.00679v1)
Published 1 Jul 2017 in cs.SD
Abstract: This work focuses on enhancing the performance of text-dependent and speaker-dependent talking condition identification systems using second-order hidden Markov models (HMM2s). Our results show that the talking condition identification performance based on HMM2s has been improved significantly compared to first-order hidden Markov models (HMM1s). Our talking conditions in this work are neutral, shouted, loud, angry, happy, and fear.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.