Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Multi-period Time Series Modeling with Sparsity via Bayesian Variational Inference (1707.00666v3)

Published 3 Jul 2017 in cs.NE

Abstract: In this paper, we use augmented the hierarchical latent variable model to model multi-period time series, where the dynamics of time series are governed by factors or trends in multiple periods. Previous methods based on stacked recurrent neural network (RNN) and deep belief network (DBN) models cannot model the tendencies in multiple periods, and no models for sequential data pay special attention to redundant input variables which have no or even negative impact on prediction and modeling. Applying hierarchical latent variable model with multiple transition periods, our proposed algorithm can capture dependencies in different temporal resolutions. Introducing Bayesian neural network with Horseshoe prior as input network, we can discard the redundant input variables in the optimization process, concurrently with the learning of other parts of the model. Based on experiments with both synthetic and real-world data, we show that the proposed method significantly improves the modeling and prediction performance on multi-period time series.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube