Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the tightness of Tietäväinen's bound for distributions with limited independence (1707.00552v1)

Published 3 Jul 2017 in cs.IT and math.IT

Abstract: In 1990, Tiet\"av\"ainen showed that if the only information we know about a linear code is its dual distance $d$, then its covering radius $R$ is at most $\frac{n}{2}-(\frac{1}{2}-o(1))\sqrt{dn}$. While Tiet\"av\"ainen's bound was later improved for large values of $d$, it is still the best known upper bound for small values including the $d = o(n)$ regime. Tiet\"av\"ainen's bound holds also for $(d-1)$-wise independent probability distributions on ${0,1}n$, of which linear codes with dual distance $d$ are special cases. We show that Tiet\"av\"ainen's bound on $R-\frac{n}{2}$ is asymptotically tight up to a factor of $2$ for $k$-wise independent distributions if $k\leq\frac{n{1/3}}{\log2{n}}$. Namely, we show that there exists a $k$-wise independent probability distribution $\mu$ on ${0,1}n$ whose covering radius is at least $\frac{n}{2}-\sqrt{kn}$. Our key technical contribution is the following lemma on low degree polynomials, which implies the existence of $\mu$ by linear programming duality. We show that, for sufficiently large $k\leq\frac{n{1/3}}{\log2{n}}$ and for each polynomial $f(v)\in {\mathbb R}[v]$ of degree at most $k$, the expected value of $f$ with respect to the binomial distribution cannot be positive if $f(w)\leq 0$ for each integer $w$ such that $|w-n/2|\leq\sqrt{kn}$. The proof uses tools from approximation theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)