Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Content-Based Weak Supervision for Ad-Hoc Re-Ranking (1707.00189v3)

Published 1 Jul 2017 in cs.IR and cs.CL

Abstract: One challenge with neural ranking is the need for a large amount of manually-labeled relevance judgments for training. In contrast with prior work, we examine the use of weak supervision sources for training that yield pseudo query-document pairs that already exhibit relevance (e.g., newswire headline-content pairs and encyclopedic heading-paragraph pairs). We also propose filtering techniques to eliminate training samples that are too far out of domain using two techniques: a heuristic-based approach and novel supervised filter that re-purposes a neural ranker. Using several leading neural ranking architectures and multiple weak supervision datasets, we show that these sources of training pairs are effective on their own (outperforming prior weak supervision techniques), and that filtering can further improve performance.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.