Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Speaker Identification in Shouted Talking Environments Based on Novel Third-Order Hidden Markov Models (1707.00138v1)

Published 1 Jul 2017 in cs.SD

Abstract: In this work we propose, implement, and evaluate novel models called Third-Order Hidden Markov Models (HMM3s) to enhance low performance of text-independent speaker identification in shouted talking environments. The proposed models have been tested on our collected speech database using Mel-Frequency Cepstral Coefficients (MFCCs). Our results demonstrate that HMM3s significantly improve speaker identification performance in such talking environments by 11.3% and 166.7% compared to second-order hidden Markov models (HMM2s) and first-order hidden Markov models (HMM1s), respectively. The achieved results based on the proposed models are close to those obtained in subjective assessment by human listeners.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube