Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker Identification Investigation and Analysis in Unbiased and Biased Emotional Talking Environments (1706.09754v1)

Published 29 Jun 2017 in cs.SD

Abstract: This work aims at investigating and analyzing speaker identification in each unbiased and biased emotional talking environments based on a classifier called Suprasegmental Hidden Markov Models (SPHMMs). The first talking environment is unbiased towards any emotion, while the second talking environment is biased towards different emotions. Each of these talking environments is made up of six distinct emotions. These emotions are neutral, angry, sad, happy, disgust and fear. The investigation and analysis of this work show that speaker identification performance in the biased talking environment is superior to that in the unbiased talking environment. The obtained results in this work are close to those achieved in subjective assessment by human judges.

Citations (8)

Summary

We haven't generated a summary for this paper yet.