Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Deep Multimodal Approach for Cold-start Music Recommendation (1706.09739v2)

Published 29 Jun 2017 in cs.IR and cs.LG

Abstract: An increasing amount of digital music is being published daily. Music streaming services often ingest all available music, but this poses a challenge: how to recommend new artists for which prior knowledge is scarce? In this work we aim to address this so-called cold-start problem by combining text and audio information with user feedback data using deep network architectures. Our method is divided into three steps. First, artist embeddings are learned from biographies by combining semantics, text features, and aggregated usage data. Second, track embeddings are learned from the audio signal and available feedback data. Finally, artist and track embeddings are combined in a multimodal network. Results suggest that both splitting the recommendation problem between feature levels (i.e., artist metadata and audio track), and merging feature embeddings in a multimodal approach improve the accuracy of the recommendations.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.