Papers
Topics
Authors
Recent
2000 character limit reached

Talking Condition Recognition in Stressful and Emotional Talking Environments Based on CSPHMM2s (1706.09729v1)

Published 29 Jun 2017 in cs.SD

Abstract: This work is aimed at exploiting Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) as classifiers to enhance talking condition recognition in stressful and emotional talking environments (completely two separate environments). The stressful talking environment that has been used in this work uses Speech Under Simulated and Actual Stress (SUSAS) database, while the emotional talking environment uses Emotional Prosody Speech and Transcripts (EPST) database. The achieved results of this work using Mel-Frequency Cepstral Coefficients (MFCCs) demonstrate that CSPHMM2s outperform each of Hidden Markov Models (HMMs), Second-Order Circular Hidden Markov Models (CHMM2s), and Suprasegmental Hidden Markov Models (SPHMMs) in enhancing talking condition recognition in the stressful and emotional talking environments. The results also show that the performance of talking condition recognition in stressful talking environments leads that in emotional talking environments by 3.67% based on CSPHMM2s. Our results obtained in subjective evaluation by human judges fall within 2.14% and 3.08% of those obtained, respectively, in stressful and emotional talking environments based on CSPHMM2s.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.