Papers
Topics
Authors
Recent
2000 character limit reached

Employing Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments (1706.09722v1)

Published 29 Jun 2017 in cs.SD

Abstract: Speaker identification performance is almost perfect in neutral talking environments; however, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environments. These proposed models possess the characteristics of both Circular Suprasegmental Hidden Markov Models (CSPHMMs) and Second-Order Suprasegmental Hidden Markov Models (SPHMM2s). The results of this work show that CSPHMM2s outperform each of: First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM1s), Second-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM2s) and First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s) in the shouted talking environments. In such talking environments and using our collected speech database, average speaker identification performance based on LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s and CSPHMM2s is 74.6%, 78.4%, 78.7% and 83.4%, respectively. Speaker identification performance obtained based on CSPHMM2s is close to that obtained based on subjective assessment by human listeners.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.