Papers
Topics
Authors
Recent
2000 character limit reached

On the relation between representations and computability (1706.09696v1)

Published 29 Jun 2017 in cs.CC and cs.LO

Abstract: One of the fundamental results in computability is the existence of well-defined functions that cannot be computed. In this paper we study the effects of data representation on computability; we show that, while for each possible way of representing data there exist incomputable functions, the computability of a specific abstract function is never an absolute property, but depends on the representation used for the function domain. We examine the scope of this dependency and provide mathematical criteria to favour some representations over others. As we shall show, there are strong reasons to suggest that computational enumerability should be an additional axiom for computation models. We analyze the link between the techniques and effects of representation changes and those of oracle machines, showing an important connection between their hierarchies. Finally, these notions enable us to gain a new insight on the Church-Turing thesis: its interpretation as the underlying algebraic structure to which computation is invariant.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.